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T
he superposition principle of quantum me-
chanics decrees that every combination of
quantum states is a legal state. That is at
odds with our experience; we never see any-
thing like what is depicted in figure 1. So

why can’t a chef prepare chicken à la Schrödinger?
The answer is that interactions with the envi-

ronment help select preferred states of the system
(see PHYSICS TODAY, October 1991, page 36). As it is
impossible to follow every variable of the composite
system–environment whole, one relies on a reduced
density matrix,1 a statistical description of the sys-
tem alone. It is obtained by averaging out the envi-
ronment; Born’s rule,2 which states that the proba-
bility of finding a system with wavefunction ∣ψ〉 in
a specific state ∣k〉 is the absolute square of 〈k∣ψ〉, jus-
tifies that averaging. 

The interactions that determine preferred states
favor the cooked and alive chickens and banish al-
ternate states with superpositions of cooked and
alive. Those preferred states, left untouched by the
interaction with the environment, are called pointer
states. They eventually end up as the eigenstates of
the reduced density matrix. The corresponding eigen -
values give probabilities—for example, of finding

the chicken cooked or alive. The environment-
 driven process that selects pointer states is called
decoherence, for a reason that will be clear soon. 

In this article I study the emergence of the clas-
sical by tracing the origin of preferred pointer states
and deducing their probabilities from core quantum
postulates, a starting point more fundamental than
decoherence theory, which relies on Born’s rule. I also
explore the role of the decohering environment as a
medium observers use to acquire information. The
redundancy of information transferred from the sys-
tem to many fragments of the environment leads to
the perception of objective classical reality.

The quantum credo
The core quantum postulates I’ll need are a strik-
ingly simple and natural part of a longer list of ax-
ioms found in many textbooks.3 They underlie
quantum weirdness, but they also help explain the
emergence of the classical.

Much of the weirdness stems from the super-
position principle implied by postulate 1: Quantum
states correspond to vectors in a Hilbert space. Thus
when ∣r〉 and ∣s〉 are legal quantum states, so is 
any ∣v〉 = α∣r〉 + β∣s〉. When ∣r〉 and ∣s〉 are orthogonal
and nor malized (that is, when 〈s∣r〉 = 0 and
〈r∣r〉 = 〈s∣s〉 = 1), then 〈v∣v〉 = |α|2 + |β|2. 

Postulate 2 says that time evolution is unitary.
According to the Schrödinger equation, a system
prepared in a state ∣s0〉 will evolve, after a time t, to
the state ∣st〉 = Ut ∣s0〉, where the time evolution
 operator Ut is determined by the Hamiltonian H:
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Ut = e−iHt/ħ. Unitary evolution preserves scalar
 products, 〈st ∣rt〉 = 〈s0∣r0〉. It is also linear, so
∣vt〉 = αUt∣r〉 + βUt∣s〉.

What I call the composition postulate, postu-
late 0, deals with states of composite systems—for
example, a system S and its environment E. It asserts
that composite states can be expressed as superpo-
sitions such as ∑k,l γk,l ∣sk〉∣εl 〉, where ∣sk 〉 and ∣εl〉 are
bases in the system and environment Hilbert
spaces. Entanglement enters via that composition
postulate. 

Postulates 0–2 guide calculations involving in-
gredients such as Hamiltonians. But such manipu-
lations are just quantum math. To do physics, the
math must be related to experiments.

The repeatability postulate, postulate 3, starts
the task. It says that an immediately repeated meas-
urement yields the same outcome. Classical re-
peatability is a given: Measurements reveal classical
states, so repeatability follows from their objective
existence. Observers cannot reveal an unknown
quantum state, but repeatability lets them confirm
the presence of known states. In fact, it’s hard to
make the so-called quantum nondemolition meas-
urements that abide by postulate 3. Yet repeatabil-
ity is key for the very idea of a state as a predictive
tool: The simplest prediction is that a state is what
it is.

The core postulates 0–3 are my quantum credo.
As we will see, they imply, or at least motivate, the
troubling remainder of the textbook list.

The measurement amendments
The remaining textbook axioms involve measure-
ment but, unlike the repeatability postulate 3, are
controversial. Postulate 4, the collapse axiom, has
two parts. According to part 4a, observables are
Hermitian; as a consequence, only operators with
orthogonal eigenstates are measurable. Axiom 4b
says that the outcome of a measurement must
 correspond to an eigenstate of the measured
 Hermitian operator. A system in an arbitrary super -
position of states will, when measured, collapse to
an eigenstate of the measured observable.

Consensus is the hallmark of objective exis-
tence. An unknown classical state can be discovered
by many and remain unchanged. By contrast, direct
measurement of a quantum system resets its state to
an item on the eigenstate menu. Thus the predictive
power of quantum math is limited and consensus
precluded. A pure quantum state doesn’t determine
measurement outcomes with certainty; rather, it
 determines their probabilities via the final axiom,
postulate 5: Born’s rule, pk = |〈k ∣ψ〉|2, the key link
 between quantum math and physics.

The randomness inherent in postulates 4 and 5
clashes with the unitarity of postulate 2. The fore -
fathers of quantum theory bypassed that conflict by
insisting with Niels Bohr4 that a part of the universe—
including measuring devices and observers—must
be classical. The selection of allowed measurement
outcomes was determined by the classical appara-
tus, and the randomness of quantum jumps arose
due to “the disturbance involved in the act of meas-
urement” (page 36).3 However, as I will discuss, the

quantum credo leads to axioms 4a and 5 and even
hints at 4b. And the perception of objective reality
follows from the role of the environment as a com-
munication channel that delivers information to us.

Repeatability and quantum jumps
Decoherence leads to environment-induced super-
selection of preferred states, and so accounts for ef-
fectively classical states and the menu of measure-
ment outcomes.5 A key tool used in practice—the
reduced density matrix—arises from averaging
over the environmental degrees of freedom in ac-
cord with Born’s rule. As I will show, though, envi-
ronment-induced superselection and decoherence
follow directly from the quantum credo; Born’s rule
is not necessary. 

Consider a measurement-like interaction of a
system S with a quantum apparatus A. The state of
A changes, but to ensure repeatability, the state of S
does not:

                      (1)

Here, the arrows represent the unitary evolution de-
termined by the Hamiltonian HSA describing the
system–apparatus interaction. Inasmuch as ∣u〉 and
∣v〉 are untouched, a second apparatus with an anal-
ogous interaction will get the same outcomes.

Because the time evolution is unitary, the before
and after scalar products of composite SA state vec-
tors must be equal:

                    〈u∣v〉 〈A0∣A0〉 = 〈u∣v〉 〈Au∣Av〉.                (2)

Equation 2, though simple, has profound conse-
quences. To analyze them, start with a misstep: In
an attempt to simplify, divide by 〈u∣v〉. The result is
〈A0∣A0〉 = 〈Au∣Av〉, or 〈Au∣Av〉 = 1. That unit value im-
plies ∣Au〉 = ∣Av〉. In other words, the apparatus can-
not distinguish ∣u〉 from ∣v〉.

Insisting on the repeatability postulate seems to
have led to an absurd result. Have I just ruled out
that part of the quantum credo as being incompati-
ble with postulates 0–2? Not at all. Only when
〈u∣v〉 ≠ 0 can one simplify  equation 2.

Instead, the above demonstration proves axiom
4a: Hermitian operators—that is, those correspond -
ing to measurable observables—have orthogonal
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Figure 1. A great moment
in the development of the
quantum microwave oven:
chicken à la Schrödinger.
 (Illustration by Ben Bromley.)



outcomes. Indeed, any 〈Au∣Av〉 ≠ 1 implies 〈u∣v〉 = 0,
so the quality of the measurement record does not
matter. Moreover, the persistence of recorded states
sets the stage for quantum jumps accompanying
any information transfer, including decoherence (in
which case the environment plays the role of A):
When only a discrete set of states in the Hilbert
space is stable, the evolution of the system will look
like a jump into one of the states.

Orthogonal states that survive multiple confir-
mations of their identity are selected by their inter-
action with the apparatus or decohering environ-
ment. Their superpositions could persist in isolation
but cannot be recorded. Only discrete, stable states
can be followed. Although there is no literal collapse
of the wavefunction, measurement records will sug-
gest a quantum jump from an initial superposition
to one of the stable states or from stable state to sta-
ble state. According to decoherence theory, the abil-
ity to withstand scrutiny of the environment defines
pointer states. As I will discuss, the proliferation of
records about those states throughout the environ-
ment is the essence of quantum Darwinism.

In microsystems, repeatability is, in fact, rare:

Nondemolition measurements are difficult. In the
macroworld, however, repeatability is essential for
the emergence of objective reality. Macrostates such
as records inscribed in an apparatus should persist
through many readouts, even as the underlying mi-
crostates change. A demonstration such as the one
given above shows that stable macrostates must
also be orthogonal to accommodate repeatability.6

Born’s rule never entered into the above discus-
sion. Scalar products of 0 and 1 signified orthogo-
nality and equality; in-between values were not
needed. Much of axiom 4 follows from the simple
and natural core  postulates 0–3.

Entanglement-assisted invariance 
Decoherence is the loss of phase coherence between
preferred states. It occurs when S starts in a super-
position of pointer states, but in the decoherence
context, S is “measured” by the environment E:

            (3)

The discussion centered around equation 2 implies
that the unaltered states are orthogonal, 〈↑∣↓〉 = 0.
Their superposition, upon interacting with the en-
vironment, turns into an entangled ∣ψSE〉; neither S
nor E retains an individual pure state.

Phases in a superposition matter. In a spin 1⁄2 –
like system, ∣→〉 = (∣↑〉 + ∣↓〉)/√2‾ is orthogonal to
∣←〉 = (∣↑〉 − ∣↓〉)/√2‾. The phase shift operator
uSφ = ∣↑〉〈↑∣ + eiφ∣↓〉〈↓∣ leaves ∣↑〉 untouched and mul-
tiplies ∣↓〉 by eiφ; when φ = π, it converts ∣→〉 to ∣←〉.
In experiments, such phase shifts translate into
shifts of interference patterns.

For simplicity, assume perfect decoherence,
〈ε↑∣ε↓〉 = 0. In that case, the environment has a per-
fect record of pointer states. What information
 survives decoherence, and what is lost? I now
show that the phases of α and β no longer matter—
that is, φ has no effect on the local state of S. Meas-
urements on the system will not detect a phase 
shift, as there is no interference pattern to shift.

The key observation is that the phase shift uSφ

acting on an entangled ∣ψSE〉 can be undone by
uE−φ = ∣ε↑〉〈ε↑∣ + e−iφ∣ε↓〉〈ε↓ ∣, a countershift acting on a
distant E decoupled from the system: 

uE−φ(uSφ∣ψSE〉) = uE−φ(α∣↑〉∣ε↑〉 + eiφβ∣↓〉∣ε↓〉) = ∣ψSE〉. (4)

As phases in ∣ψSE 〉 can be changed in a faraway en-
vironment decoupled from but entangled with the
system, they can no longer influence the state of S.
If they could, a measurement of Swould reveal that
influence and enable superluminal communication.

The loss of phase coherence is decoherence. Su-
perpositions decohere as the ∣↑〉 and ∣↓〉 states are
recorded by E. As phases no longer matter for S,
phase information about S is lost. As promised ear-
lier, that information loss was established without
reduced density matrices, the usual decoherence tool. 

The above view of decoherence appeals to sym-
metry, an entanglement-assisted invariance, or en-
variance, of S under phase shifts of pointer-state
 coefficients.7 As S entangles with E, its local state
 becomes invariant under transformations that af-
fected it before the entanglement.
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Figure 2. Probability from entanglement. The swapping of hidden
cards (a) highlights the subjective ignorance of a player, who regards
the pre- and postswap states as equivalent. The player’s indifference
suggests a “symmetry” that Pierre Simon Laplace used to define proba-
bility. (b) However, the physical state of the cards really does change
after a swap: Subjective ignorance is a shaky foundation for a theory 
of probability. (c) For quantum systems, equal probabilities follow from
entanglement. A swap in the system S is undone by a counterswap in 
a measuring apparatus A. As a result (more fully discussed in the text),
the swap in S cannot alter any predictions—including probabilities—
that depend on local states. (Illustrations by Fernando Cucchietti.)



In laboratory experiments, a system isolated
from the environment is first measured by an appa-
ratus A so that system and apparatus entangle. That
entangled state ∣ψSA 〉 then decoheres as A interacts
with E:

(5)

The pointer states ∣A↑〉 and ∣A↓〉 of A, however, 
are unaffected by the decoherence interaction 
with E. They retain perfect correlation with S (or an
observer, or other systems) in spite of E, regardless
of the value of 〈ε↑∣ε↓〉. Stability under decoherence 
is a prerequisite for effective classicality in our
quantum universe: The familiar states of macro-
scopic objects have to survive monitoring by E and
retain correlations.

The decohered SA is described by a reduced den-
sity matrix obtained by averaging out the environ-
ment. When 〈ε↑∣ε↓〉 = 0, the pointer states of A retain
their correlations with the measurement outcomes:

         ρSA = ∣α∣2∣↑〉〈↑∣∣A↑〉〈A↑∣ + ∣β∣2∣↓〉〈↓∣∣A↓〉〈A↓∣.    (6)

Both ↑ and ↓ are present. There is no collapse.
The averaging over environmental states is im-

plemented by a mathematical operation called tak-
ing a trace—that is, ρSA = TrE ∣ΨSAE 〉〈ΨSAE ∣. However,
both the interpretation of ρSA as a statistical mixture
of its eigenstates and the use of averaging via the
trace operation rely on Born’s rule, axiom 5. To avoid
circularity, I have avoided invoking that postulate
earlier. Below, I will need it, but I am now in a
 position to derive it from the quantum credo using
envariance.

Born’s rule from entanglement
Pierre Simon Laplace’s starting point for developing
probability theory was the principle of indifference—
that is, when nothing favors any one outcome, all out-
comes are equally likely.8 Thus the probability of
blindly drawing a spade from a full deck of cards is
1⁄4 because the deck has four suits, each with the same
number of cards. Of course, that result doesn’t change
if cards in the deck are swapped as illustrated in fig-
ure 2a, and that indifference to swap was regarded as
a kind of symmetry. In the classical case, the symme-
try is due to subjective ignorance: After all, if the cards
were turned over as in figure 2b, it would be evident
whether or not the to-be-drawn card is a spade. Clas-
sically, there is no objective, physical basis for the sym-
metry and, hence, for objectively equal probabilities. 

In quantum physics, one seeks the probability
of a measurement outcome starting from known ini-
tial states of S and A and the interaction HSA , and
thus from the pure entangled state that results from
the interaction; there is no room for subjective igno-
rance. Envariance, in a slightly different guise from
when it accounted for decoherence, is an objective
symmetry that leads to probabilities of mutually
 exclusive outcomes such as the orthogonal states
deduced earlier from the repeatability postulate. 

Suppose that S starts as ∣→〉 = (∣↑〉 + ∣↓〉)/√2‾, so
interaction with A yields (∣↑〉∣A↑〉 + ∣↓〉∣A↓〉)/√2‾. I call

such states—with equal absolute values of coeffi-
cients—even states. For such states, all measure-
ment outcomes are equally probable, as I now show.
Figure 2c illustrates the key step in the argument.

The unitary swap ∣↑〉〈↓∣ + ∣↓〉〈↑∣ exchanges the
states in S:

                     
(7a)

Before the swap, ∣↓〉 was as probable as ∣A↓〉, and ∣↑〉
was as probable as ∣A↑〉. After the swap, ∣↓〉 is as
probable as ∣A↑〉, and ∣↑〉 is as probable as ∣A↓〉. But
probabilities in A are unchanged, as A is untouched
by the swap, so the probabilities p↑ and p↓ in Smust
have been exchanged. 

To prove equiprobability, we now swap records
in A:

                      
(7b)

That swap restores the original preswap state.
Hence all predictions about S, including probabili-
ties, must be as they were in the original state. Evi-
dently, the probabilities of ∣↑〉 and ∣↓〉 (and of ∣A↑〉
and ∣A↓〉 for that matter) are exchanged yet un-
changed. Therefore, they must be equal to 1⁄2. For N
envariantly equivalent alternatives, it is straight -
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The main text considered superpositions of states involving a system S
and measuring apparatus A and showed how the well-known Born
probability rule follows for the specific case of superpositions whose
 coefficients have equal absolute values. Here I show how that special
case leads to Born’s rule for states ∣ϕSA〉 = α ∣↑〉∣A↑〉 + β∣↓〉∣A↓〉 in which
the coefficients are not equal in magnitude. 

First, let ∣α∣2/∣β∣2 = μ/ν, where μ and ν are natural numbers. The key
trick is to fine-grain—that is, to change the basis in the Hilbert space of
A so that ∣A↑〉 = ∑ μ

k = 1∣ak〉/√μ‾ , and ∣A↓〉 = ∑ μ + ν
k = μ + 1∣ak〉 / √ν‾. Expressed in

terms of that new basis,

Next, simplify to get rid of the fractions, and imagine an environment
that decoheres A in the new basis, so that the ∣ak〉 correlate with ∣ek〉 as
if the ∣ak〉 were the preferred pointer states: 

Now swaps of ∣↑ak〉 with ∣↓ak〉 can be undone by counterswaps of ∣ek〉,
and thus all μ + ν alternatives are equally probable. Since μ of those cor-
respond to measurements of ↑, Born’s rule follows:

Continuity establishes the result for cases in which ∣α∣2 and ∣β∣2 are
not related by rational numbers. The frequencies of detection of ↑ and
↓ can be predicted by extending the derivation to the case of many
measurements.7
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forward to show that the probabilities are all 1/N.
The discussion of envariance in the decoherence
context implies that those probabilities are un-
changed when the coefficients of the alternatives 
are multiplied by arbitrary phases.

Instead of subjective ignorance à la Laplace, I
invoked an objective symmetry of entanglement, a
quantum ingredient absent in Laplace’s classical
 setting. As with the uncertainty principle (knowing
position precludes knowing momentum), the in -
determinacy of outcomes was a consequence of
knowing something else—the whole entangled
state. The objective indeterminacy of S or A and the
equiprobability of ∣↑〉 and ∣↓〉 follow. 

For an uneven ∣ϕSA〉 = α∣↑〉∣A↑〉 + β∣↓〉∣A↓〉, swaps
on S and A yield β∣↑〉∣A↑〉 + α∣↓〉∣A↓〉. That’s not the
preswap state, and, indeed, p↑ and p↓ are not equal.
To see how Born’s rule arises for the uneven case,
turn to the box on page 47.

Information interlude
Decoherence builds on John von Neumann’s analy-
sis of measurement1 but begins to recognize the role
of the environment. Its usual implementation, how-
ever, relies on Born’s rule, axiom 5, to justify the
physical significance of reduced density matrices.
We now have a simple yet fundamental demonstra-
tion of Born’s rule. The next goal is to understand
the emergence of objective classical reality in our
quantum universe. As I will discuss below, environ-
ments do more than decohere; they act as com -
munication channels through which we obtain our
 information. 

Pointer states preserve correlations, in particu-
lar between a system and a measuring apparatus.

The one-to-one correspondence of states of S and A,
which is evident in equations 5 and 6, does not rely
on Born’s rule. However, quantifying the informa-
tion A has about S relies on the interpretation of the
reduced density matrices as statistical mixtures of
their eigenstates with probabilities (in the case of
equation 6) given by p↑ = pA↑ = ∣α∣2, p↓ = pA↓ = ∣β∣2.
Now that Born’s rule has been justified, the reduced
density matrix may be used with confidence to cal-
culate the entropy and information needed to study
what I call quantum Darwinism. 

The entropies of S, A, and the composite SA
are given by the von Neumann expression
H(ρ) = −Tr(ρlnρ). For the reduced density matrix of
equation 6, all three entropies are, in fact, equal:

        HS = HA = HSA = −(|α|2 ln|α|2 + |β|2 ln|β|2).   (8)

That equality means S and A know each other’s pre-
ferred states perfectly. It’s as if one had two identical
copies of the same book; each individual copy would
reveal the information content of the two books. How
much two systems know about each other is quanti-
fied by the so-called mutual information9

                       I(S : A) = HS + HA − HSA .                  (9)

When S and A are totally uncorrelated,
ρSA = ρSρA , HSA = HS + HA , and I(S : A) = 0. For the
perfectly correlated case corresponding to equa-
tion 6, I(S : A) = HS = HA .

In a classical world, I(S : A) ≤ min(HS , HA ).
After all, the information common to two books
 cannot exceed the content of the smaller book. Thus
the decohered reduced density matrix of equation 6
saturates the classical limit.

Quantum correlations can be stronger. Entan-
glement correlates every basis—for example,
(∣↑↑〉 + ∣↓↓〉)/√2‾ = (∣→→〉 + ∣←←〉)/√2‾. Decoherence
that favors the pointer states ∣↑〉 and ∣↓〉 yields
ρ = (∣↑↑〉〈↑↑∣ + ∣↓↓〉〈↓↓∣)/2. Pointer states remain
 correlated, but the ∣→〉 and ∣←〉 states do not. The
mutual information reflects that state of affairs: For
a pure, entangled SA whole, α∣↑〉∣A↑〉 + β∣↓〉∣A↓〉,
HSA = 0, whereas HS = HA = −∣α∣2 ln ∣α∣2 − ∣β∣2 ln ∣β∣2,
so I(S : A) = 2HS .

Quantum Darwinism studies the role of the in-
formation about the system that proliferates and
spreads throughout the environment in the emer-
gence of the classical. Mutual information is its es-
sential tool. When I(S : A) = HS , an apparatus can
fully reveal the state of S. In quantum Darwinism,
a fragment F of the environment plays the role of
A. Its correlation with S will often be effectively
classical, as the rest of the environment (denoted
E\F ) assures decoherence.

Quantum Darwinism
We all monitor our world indirectly, eavesdropping
on the environment. For instance, you are now in-
tercepting a fraction of the photons scattered from
this page. Anyone intercepting other fractions will
see the same images. Quantum Darwinism recog-
nizes that environments consist of many subsys-
tems, as illustrated in figure 3, and that observers
acquire information about a system by intercepting
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Figure 3. Environmental fragments as witnesses.
(a) The decoherence paradigm distinguishes 
between a system S and its environment E. (b) The
environment, in turn, may be viewed as a collection
of many subsystems Ei. (c) Quantum Darwinism
recognizes that subsystems combined into
 environmental fragments Fj can act as measuring
devices that store information about the system.



copies of its pointer states deposited in fragments of
the environment.

The environment-induced superselection asso-
ciated with decoherence has already hinted at sur-
vival of the fittest: Environments select pointer
states that survive and can aspire to classicality.
Quantum Darwinism goes beyond mere survival to
address proliferation—how, during the course of
decoherence, copies of pointer states of S or A get
imprinted on E.10

For an environment comprising many subsys-
tems (formally, an environment expressible as a ten-
sor product of subsystem Hilbert spaces), the initial
state (α∣↑〉 + β∣↓〉)∣ε0

(1) ε0
(2) ε0

(3) . . .〉 evolves into 

∣ΥSE〉 = α∣↑〉∣ε↑(1)ε↑(2)ε↑(3) . . .〉 + β∣↓〉∣ε↓(1)ε↓(2)ε↓(3) . . .〉. (10)

The state ∣ΥSE 〉 represents many records inscribed in
environmental fragments. As a consequence, the
state of S can be found out by many observers—
independently and without disturbing S. That re-
dundancy is how evidence of objective existence
arises in our quantum world.

An environment fragment F acts as an appa -
ratus with a possibly incomplete record of S. 
When E\F is traced out, SF decoheres, and the re-
duced density matrix describing the joint state of 
S and F is

         ρSF = |α|2∣↑〉〈↑∣∣F↑〉〈F↑∣ + |β|2∣↓〉〈↓∣∣F↓〉〈F↓∣ ,  (11)

in close analogy with equation 6. When 〈F↑∣F↓〉 = 0,
F contains a perfect record of the preferred states of
the system. 

The number of copies of the data in E about
pointer states is the measure of objectivity; it deter-
mines how many times information about S can be
extracted from E. The central question of quantum
Darwinism is thus, What fraction of E does one need
to sample if the goal is to find out about S? Mutual
information provides the answer. Let #E denote the
number of subsystems and #F be the number of
subsystems in a fragment Ff that makes up a frac-
tion f = #F/#E of E. Then I(S : Ff ) = HS + HFf

− HSFf

is the information about S available from Ff .
In principle, each individual subsystem might

be enough to reveal the state of S. In that case,
I(S : Ff ) would jump to HS at f = 1/#E. Usually, how-
ever, larger fragments of E are needed to find out
enough about S. The red curve in figure 4 shows
how, after an initial sharp rise, I(S : Ff ) only gradu-
ally approaches the classical plateau at HS . As illus-
trated in the figure, the initial rise is completed at a
fraction fδ , defined with the help of the information
deficit δ observers tolerate:

                          I(S : Ff δ
) = (1 − δ) HS .                   (12)

The inverse of fδ is the number of records in the
environment—the redundancy, Rδ. It sets the upper
limit on how many observers can find out the state
of S independently and indirectly. In several models
that have been studied10 (and in particular, for the
photon-scattering model of decoherence11), Rδ is
huge12 and varies weakly (that is, logarithmically)
with δ. 

Decoherence can, under the right conditions,

lead to “quantum spam” as Rδ imprints of pointer
states are broadcast through the environment.
Many observers can independently access those im-
prints, which ensures the objectivity of pointer
states of S. 

Repeatability is key. Collectively, the environ-
mental fragments act like the apparatuses posited in
connection with equations 1 and 2; they register
multiple records of pointer states of Swithout alter-
ing them. The no-cloning theorem restricts the abil-
ity to make copies, but copying is possible when the
states to be copied are all orthogonal (see PHYSICS
TODAY, February 2009, page 76). 

Repeatability thus begets discreteness. The
time evolution responsible for decoherence yields a
superposition of distinct branches, each with a sta-
ble state and many environmental imprints, per
equation 10. So there is no literal collapse. However,
as a result of decoherence by E\F, an observer mon-
itoring the records imprinted on fragments of E
will see only one branch, not a superposition of
branches. Such evidence will suggest a quantum
jump from a superposition of states to a single out-
come (or, under appropriate  circumstances, from
state to state), in accord with postulate 4b.

Environment as witness
Quantum Darwinism shows why it is so hard to
undo decoherence. As illustrated in figure 4, a plot
of mutual information for an initially pure S and E
is antisymmetric about f = 1⁄2 and HS .10 Hence, a
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Figure 4. Information about a system contained in a fraction f
of the environment. The red curve shows a typical result for the
 mutual information gained via decoherence. (The text gives a 
precise definition.) Its rapid rise means that a large fraction 
(1 − δ ) of classically  accessible information can be revealed by a
small  fraction (fδ) of the environment. The long classical plateau
signifies that  additional environmental fragments merely confirm
what was  already known. The rather different green curve shows
the  information in the environment for a  randomly selected pure
state in the system–environment composite. 



counterpoint of the initial quick rise of the red curve
at f ≤ fδ is a quick rise at f ≥ 1 − fδ as the last few sub-
systems of E are included in the fragment F that by
now contains nearly all E. Such a rise must occur in
an isolated SE, because an initially pure SE remains
pure under unitary evolution. 

For the system–environment whole, HSE = 0, so
I(S : Ff)∣f = 1 must reach 2HS . Thus a measurement of
all of SE could confirm a state’s purity despite the
decoherence caused by E\F for all f ≤ 1 − fδ . (In
principle, a measurement of E alone reveals the
state; the measurement of S confirms that revela-
tion.) However, such a confirmation would require
intercepting and measuring all of SE in a way that
reveals the pure state without perturbing it. So un-
doing decoherence is possible in principle, but the
required resources and foresight preclude it.

In quantum Darwinism, the decohering envi-
ronment acts as an amplifier, inducing a branch
structure that is distinct from randomly selected
states in the Hilbert space of SE. For those generic
states, as the green plot in figure 4 shows, the mu-
tual information has no plateau and so the environ-
ment registers no redundancy.13 The plot is still an-
tisymmetric: I(S : Ff ) jumps at f = 1⁄2 to nearly 2HS . 

Not all environments are good witnesses. How-
ever, photons excel: They do not interact with air or
with each other, and so they faithfully pass on in-
formation. A small fraction of a photon environment
usually reveals all an observer needs to know. The
scattering of sunlight quickly builds up redun-
dancy. For example, when photons scatter off a 
1-μm- diameter dielectric sphere in a superposition
of states 1 μm apart, Rδ = 0.1 increases by about 108

every microsecond.12

Air is also good in decohering, but its molecules
interact and scramble acquired data. Objects of in-
terest scatter air and photons, so both environments
acquire information about position and favor simi-
lar localized pointer states.

Environments, like air, that decohere S but
scramble information because of interactions be-
tween subsystems eventually lead to a random state
in SE. Quantum Darwinism is possible only when
information about S is preserved in fragments of E
and so can be recovered by observers. Absolute per-
fection is not necessary. Partially mixed environ-
ments or imperfect measurements correspond to
noisy communication channels that, despite their
depleted capacity, can still deliver the message.14

Information and objective reality
John Wheeler, Charles Bennett, and others have pre-
viously considered the relation between information
and existence.15 Quantum Darwinism adheres to the
quantum credo and adds to that discussion by recog-
nizing that a decohering environment can be a com-
munication channel. But since observers intercept
only fractions of E, information about S is only acces-
sible when it is redundantly imprinted on E. Put an-
other way, an observer can get information only about
pointer states that remain intact despite monitoring by
E: Using the environment as a communication channel
comes at the price of censorship. Fractions of E reveal
branches one at a time and suggest quantum jumps. 

The basic tenets of decoherence have been con-
firmed by experiment,16 and it may also be possible
to test quantum Darwinism; envariance is already
being tested.17 The list of textbook axioms has now
been reduced, as the Hermitian nature of observ-
ables and Born’s rule follow from the quantum
credo. Accounting for collapse goes beyond mathe-
matics, as it involves perception. That is where
quantum physics gets personal. Nevertheless, the
indirect monitoring of quantum systems recognized
by quantum Darwinism implies that after their first
glimpse of data in E, observers will get only confir-
mations and updates. So the first glimpse eliminates
surprise—collapses it, if you will. Thereafter, as was
the case in the classical world we once thought we
inhabited, pointer states persist objectively, un-
touched by our curiosity and oblivious to our indi-
rect monitoring.
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